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Motivation

• Intelligence analysts must identify relationships in huge

amounts of data

• Data is collected from multiple sources at increasing rates

• Challenge:  identify relationships and uncover patterns in a

timely manner

• Approach:  use semantic graphs to represent the data and

graph algorithms to discover hidden relationships
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Semantic graphs have attributes and types

on the vertices and edges
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Semantic graphs for information analysis are

becoming enormous

• Distributed memory parallel computers must be

used to store and search these graphs

• Graphs must be partitioned onto separate

memories and graph searches must have low

communication cost

• Topological properties of semantic graphs make

standard partitioning techniques ineffective

• Our goals are to develop partitioners and

efficient, scalable parallel search algorithms
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We are developing parallel algorithms to

search massive graphs

• Partitioning for

semantic graphs

• Heuristics for

searching semantic

graphs, incl. template

matching

• Scalable parallel

implementations

• Properties of complex

information networks

• Knowledge discovery

in relational data
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To find the shortest path, use A* search,

which uses a heuristic to guide the search

h=4

h=3

h=5

Use a cost function of the form:

       f(s,c,d) = g(s,c) + h(c,d)

s

d

c

h is admissible if it never over-estimates actual cost
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Level-difference heuristic
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h1(i,j) = | level(i) - level(j) |

h(i,j) = max{ h1(i,j), …, hm(i,j) },   m centers

Error in the heuristic can be bounded
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Example:  heuristic distance to

a vertex on a mesh

Heuristic distance to red vertex given two center vertices
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Test graphs
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Random graph, 64k vertices, <k> = 6
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Spatial graph, 64k vertices, =4
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2-D Mesh, 64k vertices
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Internet graph
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Scalability (random graphs <k> = 6)
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Effect of vertex degree (random graphs)
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2D Partitioning

• Partition the vertices (1D) or the edges (2D)

• 2D partitioning has been advocated for sparse

matrices where the sparsity pattern is difficult to

exploit (Hendrickson, Leland, and Plimpton 1995)

• Many variants of 2D partitioning (Catalyurek 1999)

• 2D checkerboard variant is perhaps most useful

– Redistribution-free, transpose-free

doubling/halving (Lewis and van de Geijn 1993,

Lewis, Payne, and van de Geijn 1994)

– 2D checkerboard (Catalyurek 1999, Catalyurek

and Aykanat 2001)
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Example: Adjacency matrix

Partition to

minimize

processor

communication

while maintaining

load balance
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Example: 6-way Vertex Partitioning
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Example: 2x3 Edge Partitioning
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Example: 2x3 Edge Partitioning

Processor

Mesh
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Example: 2x3 Edge Partitioning

Processor

Mesh
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Level-synchronized Parallel Search

Do l=0 to … until target is found

F = set of assigned vertices with level l

Column Expand communication (send F, receive F’)

N = set of neighbor vertices of F’

Row Fold communication (send N, receive N’)

Update levels of vertices in N’

Enddo

• Expand is all-gather or all-to-all

• Reduce is all-to-all or reduce-scatter

• Must store vertex lists in sparse mode

• Storage is scalable for random graphs

• If the blocks are balanced, then the communication is balanced for

any graph
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Spatial networks

• P(edge) ~ length(edge)- 

• Poisson random graphs

have  = 0

•  is related to clustering

coefficient

• Best partitioning is

geometric

Spatial network with  =1

and avg. degree 10
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Communication volume for 1D and 2D partitioning

Compute

d

by PaToH
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Communication volume for 1D and 2D partitioning
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Number of messages for 1D and 2D partitioning
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Number of messages for 1D and 2D partitioning
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Parallel Search Experimental Setup

• Parallel Breadth First Search (BFS) algorithm

– Level-synchronized algorithm

– Report average time for 100 pairs

– Does not take into account increasing graph avg. path

length (varies from 5 to 9)

• Input graphs

– Undirected Poisson random graphs with degree 10 or 100

– Random 2D checkerboard partitioning

– Vertices and edges accessed from memory

• Machines

– MCR (Quadrics Linux Cluster)

– BlueGene/L
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Weak-Scaling, up to 1024 processors, <k>=100,

100 million vertices, 10 billion edges

1D (1024x1)

2D (32x32)
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Weak-Scaling, up to 1024 processors, <k>=10,

1 billion vertices, 10 billion edges

1D (1024x1)

2D (32x32)
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BlueGene/L timings, up to 32k

processors

4.90181 x 1813.28 Billion

4.64140 x 1401.96 Billion

4.37100 x 1001.00 Billion

Search

Time (s)

Processor

Mesh

Number of

Vertices

Constant local problem size of 100k vertices/processor

for a random graph with average degree 10.
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Scalability on BlueGene/L up to 32k

processors
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Conclusions

• Heuristic search can be used to reduce the cost of

relationship detection

• 2-D partitioning is effective for unstructured graphs

with high average degree

• For more information:

http://www.llnl.gov/casc/compnets
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